
gcc Tutorial
What is gcc?
Gcc stands for gnu compiler collection. Gnu is a type of license for free, 
open source software. The majority of gnu software is for unix-based 
systems. A compiler is a computer program used to convert code into a 
file that the computer can execute. So gcc refers to a collection of Unix-
based, free programs which convert source code into machine code. Our 
linux drives in the lab have a copy of gcc, along with several other 
compilers. On the Windows drives, we are using a program called 
mingw. Mingw stands for Minimalist Gnu for Windows. It is not gcc 
specifically, because it is not part of the gnu project. It is a full re-
implementation of the gnu C and C++ compilers (the next section shows 
that gcc supports more languages) for the Windows operating system, 
and is used in the exact same way that gcc is used, keystroke by 
keystroke.

This tutorial assumes that the user understands how to work in a 
terminal window. In windows, the best way to open a terminal is to go to 
the start menu, select run, and type cmd in the resulting window. Due to 
the variation of Unix systems, there is no definite answer as to how to 
open a terminal window, but many environments will have an icon that 
looks like a computer screen that you can click to get a terminal window. 
In the lab, you will find such an icon in the lower left hand corner of the 
screen.

gcc Basics

• Kinds of Code gcc Handles



◦ Gcc handles C, C++, Objective C, Java and Fortran. You may 
see commands using 'g++' rather than gcc. If you run gcc on 
a .c file, gcc will run the C compiler automatically. If you run 
gcc on a .cc file, gcc will recognize the extension and run g+
+ automatically. If you for some reason have a different file 
extension, then g++ must be called so that the compiler 
knows what kind of code is in the file. This is true of all of 
gcc's compilers. For more information, go to the gcc project 
page. To be certain you are always using the correct 
command, use gcc for old-style C code, and use g++ when 
compiling C++ code. Also note that the java compiler is a 
rather young project, and may not handle code intended to be 
compiled using Sun's java compiler, javac. Gcc is most 
pupolar with c and c++ programmers.

• Flags

◦ Flags are extra pieces of text that accompany a program 
called from the command line. For example, in Unix, 'ls' will 
display all the unhidden files in the current working directory. 
'ls -a' will display all the files, including hidden files, in the 
current working directory. Flags can also have arguments 
accompanying them, such as 'tar -z -c directory.tgz -f 
directory', where -c takes a name of a file to create, and -f 
takes a directory of files to compress.

• Getting Started

◦ It is good practice to use a standard extension for your 
filenames, and it also allows gcc to be more helpful. You 
should name your C files using the .c extension, such as 
file.c . C++ files should be named with a .cc extension, such 
as file.cc . This tutorial uses c++ as a language. You may use 
your own c++ file, or you can download source from the 

http://directory.fsf.org/devel/compilers/gcc.html
http://directory.fsf.org/devel/compilers/gcc.html
http://directory.fsf.org/devel/compilers/gcc.html
http://directory.fsf.org/devel/compilers/gcc.html


links that follow. Make sure to right click on the link and 
choose 'save target as' to download the file. To compile the 
simple program helloworld.cc change to the directory the file 
is in, and type 

      > g++ helloworld.cc

where the '>' is the beginning of the command prompt. 
Assuming your code had no errors, you may detect a slight 
pause, then a second command prompt appears on the screen. 
What just happened? g++ just compiled your code and 
automatically created an executable file in the same directory. 
On unix systems, this default file is 'a.out', and on Windows 
systems, the default file is 'a.exe'. You can run your program 
by typing 

      > ./a.out 

or 

      > a.exe 

Assume for a minute that you may compile more than one 
program in your lifetime. You could compile the file to a.out 
or a.exe and then rename it to something more descriptive, 
but most computer scientists are obsessed with eliminating 
unnecessary steps, so gcc allows you to use the '-o' flag to 
specify the name you would like the executable to have: 

      > g++ helloworld.cpp -o helloworld.o 

Now, instead of a.out, g++ creates an executable named 
helloworld.o. In Unix systems, any file can be labeled as an 
executable, and it is common to either use the .o extension, or 

https://webedit.wooster.edu/~/media/files/academics/studies/computer-science/resources/helloworld.ashx
https://webedit.wooster.edu/~/media/files/academics/studies/computer-science/resources/helloworld.ashx


to have no extension at all. In Windows you should always 
use the .exe extension so that windows knows to run that file 
as an executable. 
Another useful flag is the -Wall flag. This causes all warning 
messages, no matter how slight, to be printed to the screen. 
Warnings are different from errors, because when the 
compiler detects an error, no executable file will be created. 
A warning is more of a 'you did this, but it is not a very good 
idea' kind of message. Declaring a variable and never using it 
is an example of coding that will run without errors, but will 
produce a compiler warning. Warnings might provide a hint 
when you are trying to debug your program, so keep it in 
mind when compiling. You now know everything you need to 
know about compiling and running a simple c++ application 
using gcc. The next section will describe some more 
advanced operations. 

• Compiling More than One File into a Single 
Program

◦ g++ has the power to link compiled output from several files 
into a single executable. You can do this two different ways. 
You can either supply all of the source files in one 
compilation or you can compile them separately and then 
integrate them into a single executable at a later time. To 
supply all of the files at compile time, use this format: 

      > g++ [options] file1 file2 ... fileN 

where the options can include '-o' and '-Wall'. It is important 
to remember that .h files should be in the same directory as 
the .cc files, but should not be included in the g++ command. 
Try this example. Download frog.cc, frog.h and main.cc into 

https://webedit.wooster.edu/~/media/files/academics/studies/computer-science/resources/frog-cc.ashxf
https://webedit.wooster.edu/~/media/files/academics/studies/computer-science/resources/frog-cc.ashxf
https://webedit.wooster.edu/~/media/files/academics/studies/computer-science/resources/frog-h.ashx
https://webedit.wooster.edu/~/media/files/academics/studies/computer-science/resources/frog-h.ashx
https://webedit.wooster.edu/~/media/files/academics/studies/computer-science/resources/main.ashx
https://webedit.wooster.edu/~/media/files/academics/studies/computer-science/resources/main.ashx


the same directory. Then type 

      > g++ -Wall -o frog.exe frog.cc main.cc 

Assuming there were no errors, you will find an executable 
named frog.exe in the same folder where you compiled. The 
second method, making multiple calls to gcc, has some 
distinct advanatages. Here is the process, using the same 
source files from above: 

      > g++ -c frog.cc 
      > g++ -c main.cc 
      > g++ frog.o main.o -o froggie.exe

This process is most useful for large projects. For our simple 
frog example, the extra steps don't make sense. However, 
imagine a large software project with 45 source-files, each 
one containg 2000+ lines of code. Compiling every single file 
into a single executable could take several minutes, or 
possibly hours. This is where makefiles are useful. Makefiles 
have the capability of checking each source file, determining 
if it has been changed, and calling g++ with the -c flag to 
compile only the files that require compilation. But even 
without a makefile, you could manually save yourself time by 
only compiling the files you know have changed. For a large 
project, if you are only working on a handful of files, this can 
reduce compilation time substantially. 

• For More Help

◦ For more help using g++, try the man page on any Unix 
system, 

      > man g++



On the windows systems in the lab, there is no 'man' 
command, but the page can be found online here. 

• GCC tutorial written by Adam Anthony February 2005 

http://www.ma.utexas.edu/cgi-bin/man-cgi?gcc+1
http://www.ma.utexas.edu/cgi-bin/man-cgi?gcc+1

